
ID: pone.0331002 — 2025/8/28 — page 1 — #1

PLOS ONE

OPEN ACCESS

Citation: Hu P, Bunea B, Helveston JP (2025)
surveydown: An open-source, markdown-based
platform for programmable and reproducible
surveys. PLoS One 20(8): e0331002.
https://doi.org/10.1371/journal.pone.0331002

Editor: Diego A. Forero, Fundación Universitaria
del Área Andina, COLOMBIA

Received: April 17, 2025

Accepted: August 9, 2025

Published: August 29, 2025

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles.
The editorial history of this article is available
here: https://doi.org/10.1371/journal.pone.
0331002

Copyright: © 2025 Hu et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: The source code
for the package described in this paper can be
found at https://github.com/surveydown-
dev/surveydown/.

RESEARCH ARTICLE

surveydown: An open-source,
markdown-based platform
for programmable and reproducible
surveys
Pingfan Hu

, Bogdan Bunea

, John Paul Helveston

∗

Department of Engineering Management and Systems Engineering, George Washington University,
Washington, District of Columbia, United States of America

∗ jph@gwu.edu

Abstract
This paper introduces the surveydown survey platform. With surveydown, researchers
can create surveys that are programmable and reproducible using markdown and R
code, leveraging the Quarto publication system and R Shiny web framework. While most
survey platforms rely on graphical interfaces or spreadsheets to define survey content,
surveydown uses plain text, enabling version control and collaboration via tools like
GitHub. The package renders surveys as interactive Shiny web applications, allowing
for complex features like conditional skip logic, dynamic question display, and complex
randomization. The package supports a diverse set of question types and formatting
options and users can leverage Shiny’s powerful reactive programming model to create
a wide variety of interactive features. As an open-source platform, surveydown provides
researchers full control over their survey implementation, including the survey applica-
tion as well as where and how the resulting response data are stored. Workflows are
entirely reproducible and integrate seamlessly with existing workflows for data collection
and analysis in R.

Introduction
Survey research is integral to many fields, and researchers have a wide variety of software plat-
forms to choose from depending on their needs. Those needs often extend well beyond the
basic feature set of the survey software and include budgetary constraints (i.e. using a free
or paid product), transparency (e.g., whether the platform is open-source), the user inter-
face, the ability to collaborate across teams, the ability to control access to the raw data, and
the learning curve associated with using the platform, among other considerations. These
diverse requirements create a complex decision landscape for survey researchers seeking a
software solution that meets their needs. Although there are many options to choose from,
most impose fundamental limitations on reproducibility, collaboration, and integration with
data analysis workflows. These limitations can impede scientific rigor, increase costs, and
create barriers to effective research practices.

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 1/ 15

https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0331002&domain=pdf&date_stamp=2025-08-29
https://doi.org/10.1371/journal.pone.0331002
https://doi.org/10.1371/journal.pone.0331002
https://doi.org/10.1371/journal.pone.0331002
https://creativecommons.org/licenses/by/4.0/
https://github.com/surveydown-dev/surveydown/
https://github.com/surveydown-dev/surveydown/
https://orcid.org/0009-0001-4877-4844
https://orcid.org/0009-0006-2942-0588
https://orcid.org/0000-0002-2657-9191
mailto:jph@gwu.edu
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 2 — #2

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

Existing survey platforms typically rely on graphical user interfaces (GUIs) or spreadsheetsFunding: This work was partially supported by a
grant from the Alfred P. Sloan Foundation
(https://sloan.org/), Grant Number
G-2023-20976 awarded to PI John Paul
Helveston. The funders did not play a role in the
study design, data collection and analysis,
decision to publish, or preparation of the
manuscript. There was no additional external
funding received for this study.

Competing interests: The authors have
declared that no competing interests exist.

(XMLForms) to define survey content, making version control, collaboration, and repro-
ducibility difficult or impossible. Commercial platforms often require expensive licenses, plac-
ing them out of reach for many researchers and students. Additionally, most platforms offer
limited control over where and how response data is stored, raising concerns about data own-
ership and long-term accessibility. Finally, few platforms integrate seamlessly with modern
data analysis workflows, often requiring manual data export and reformatting before analysis
can begin.

This paper introduces surveydown, an open-source survey platform and software pack-
age for the R programming language [1] that addresses these limitations through several key
innovations. First, surveydown employs a plain text, markdown-based system for defining
surveys building on the Quarto publication system [2], enabling complete reproducibility and
version control through tools like Git. Second, surveydown allows real-time code execution
during survey administration by leveraging the R Shiny web framework [3], enabling com-
plex and highly customized surveys with features such as dynamic question generation, com-
plex randomization, and conditional logic that few existing platforms can match. Third, while
most survey platforms employ an “all-in-one” design where a single application or website is
used to design the survey, field it, and store the data, surveydown embraces a disaggregated
design where researchers maintain complete control over their survey implementation and
data storage.

The surveydown platform is particularly valuable for researchers who need reproducible
survey designs, require complex survey functionality, or want to maintain complete control
over their survey data, all without needing advanced web development skills, such as knowl-
edge of JavaScript. The platform is accessible to users with basic R knowledge, while offer-
ing advanced capabilities for those with more experience in programming or the Shiny web
framework. The approach aligns with modern reproducible research practices and integrates
seamlessly with R-based data analysis workflows.

The remainder of this paper details the software design (Section 2), describes its key advan-
tages and features compared to existing platforms (Section 3), and concludes with a discus-
sion of community adoption, future directions, and limitations (Section 4).

Software design
Overall architecture
The surveydown project is both an R package and survey platform that leverages three open
source technologies: Quarto for survey design, Shiny for the web framework, and PostgreSQL
for data storage. The surveydown R package provides functions and the control logic to
pull these technologies together into a cohesive survey platform. Available through the Com-
prehensive R Archive Network (CRAN), the surveydown package can be installed using
install.packages(``surveydown'') in the R console and is available via a MIT
license. Fig 1 below is an illustration of the core technologies that form the surveydown
platform.

Every surveydown survey consists of a survey document and a web application, defined in
two separate files named survey.qmd and app.R. These files must be in the same directory
and have these precise file names as the surveydown package searches for them in the work-
ing directory. To make multiple surveys, users should organize each survey into a separate
folder.

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 2/ 15

https://sloan.org/
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 3 — #3

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

Fig 1. Core technologies in the surveydown survey platform. Quarto for survey design, Shiny for the web frame-
work, and PostgreSQL for data storage. The surveydown R package ties them together into a cohesive survey
platform.

https://doi.org/10.1371/journal.pone.0331002.g001

The survey.qmd file is a standard Quarto document. Quarto is an open-source publishing
system developed by Posit PBC that enables users to combine markdown-formatted text and
code chunks into single documents (.qmd files) that can be rendered into a variety of differ-
ent outputs, such as html pages, pdf documents, and even presentation slides and websites [2].
With surveydown, users define all of the main survey content using plain text (markdown and
code chunks) in the survey.qmd file, including pages, text, images, questions, and navigation
buttons.

The app.R is a standard R script defining a Shiny web application. The shiny R package
allows users to build interactive web applications and dashboards using only R code, enabling
users to create dynamic data visualizations and web-based tools without knowing web pro-
gramming languages like JavaScript [3]. With surveydown, users define a Shiny application in
the app.R file that includes global settings (libraries, database configuration, etc.) and server
configuration options (e.g., conditional page skipping or question display).

The surveydown R package provides functions for defining survey content (e.g., sur-
vey questions, navigation buttons, etc.) as well as the overall server logic to drive the Shiny
web application. Once a user is done defining the content in their survey, the Shiny applica-
tion renders the survey.qmd Quarto document into a static html document, parses the docu-
ment into survey pages, then serves each page in an interactive web application. The package
also contains logic for controlling the storage of respondent data as it comes in once the sur-
vey is fielded. In the next section, we use an expositional example to showcase the construc-
tion of a minimum survey and provide a flow diagram to illustrate the overall logic flow of the
surveydown platform for a typical survey.

Expositional example
This section presents an expositional example of a two-page survey to explain the basic struc-
ture of the the survey.qmd and app.R files in a typical surveydown survey, followed by a flow
diagram to explain the overall logic flows of what happens under the hood. The code below is
an example survey.qmd file.

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 3/ 15

https://doi.org/10.1371/journal.pone.0331002.g001
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 4 — #4

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

format: html
echo: false
warning: false

```{r}
library(surveydown)
```

::: {.sd_page id=welcome}

Welcome to our survey!

```{r}
sd_question(
type = "mc",
id = "penguins",
label = "What's your favorite penguin?",
option = c(
"Adélie" = "adelie",
"Chinstrap" = "chinstrap",
"Gentoo" = "gentoo"

)
)

sd_next()
```

:::

::: {.sd_page id=end}

This is the last page of the survey.

```{r}
sd_close()
```

:::

At the top of the file is the YAML header, which defines several options to control the ren-
dering process—namely, that the file should render into an html file (format: html), and
that any code that is run in the file should not display the code itself or any warning messages
when it runs (echo: false and warning: false). After loading the surveydown
package, the rest of the file defines two pages: one with a multiple choice question, and
another that is the ending page.

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 4/ 15

https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 5 — #5

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

Pages are defined using three colon symbols :::, called a “fence”, along with a
.sd_page class definition and a page id. In the above example, the first page is defined
as ::: {.sd_page id=welcome}, where the id is set to welcome. In between
this and the closing page ::: symbol, users can insert content (e.g., text, images, links,
etc.) using markdown formatting along with R code chunks to insert content defined using
surveydown package functions.

Questions are defined using the sd_question() function. In the above example, the
type = ``mc" argument is used to define a multiple choice question. The package sup-
ports a wide variety of question types, discussed in detail later in the paper. The id argument
is set to "penguins", which is the name that will be used to store the respondent data for
this question. Finally, the option argument defines the multiple-choice options as a named
vector, where the names are what respondents see and the values are what is stored in the
data. Built-in question types include:

• text: text input type.
• textarea: textarea input type.
• numeric: numeric input type.
• mc: multiple choice type.
• mc_buttons: button version of mc.
• mc_multiple: multiple choice type with multiple selections.
• mc_multiple_buttons: button version of mc_multiple.
• select: drop down select type.
• slider: slider input type.
• slider_numeric: slider input type with numeric value, supporting single input or a
range.

• date: date input type.
• daterange: daterange input type.
• matrix: matrix input type, containing a combination of mc. questions sharing a same set
of options.

In addition to the question, the sd_next() is used inside the same code chunk to define
a next button, which will by default navigate to the next page. Users can also provide an
optional next_page argument to navigate to other survey pages if desired, using the page
id as the next_page value. For now, surveydown only supports forward navigation as
backwards navigation requires careful consideration of potential skipping logic that can create
navigational loops, though adding support for a back button is on the development roadmap.
Finally, the end page has a single sentence followed by the sd_close() function in another
code chunk to insert a closing button that ends the survey. Fig 2 shows what the resulting two
survey pages look like when rendered in a live survey app.

While the survey.qmd file defines the survey content, the app.R file renders the sur-
vey.qmd file into an interactive web application via the R shiny package. A minimal app.R
file needs to contain code to 1) make the database connection to store respondent data, 2)
define the user interface, 3) define the server, and 4) launch the app. The code below is an
example of a minimal app.R file:

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 5/ 15

https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 6 — #6

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

Fig 2. Screenshots of the rendered survey pages in the above example survey. A:The “Welcome to our survey!” text
is in large, bold font because it is defined as a level 1 header, using the # symbol. The multiple choice question dis-
played is defined by the sd_question() function, and the “next” button is defined by the sd_next() function.
B: The “Exit Survey” button is defined using the sd_close() function.

https://doi.org/10.1371/journal.pone.0331002.g002

library(surveydown)

Database Credentials (Run in R Console)
sd_db_config()

Connect to Database
db <- sd_db_connect()

Define the ui (processes the survey.qmd file)
ui <- sd_ui()

Define the server
server <- function(input, output, session) {
sd_server(db = db)

}

Launch Survey
shiny::shinyApp(ui = ui, server = server)

After loading the surveydown package, the first few lines set up the database con-
figuration. While any PostgreSQL database can be used for data storage, we recommend
https://supabase.com as a free, open-source, cloud-based option. The sd_db_config()
function can be run in the R console to store the database credentials in a local .env file,
which include the host, port, database name, user name, password, and table name. Once
the credentials are saved, the sd_db_connect() function is used to make a connection.
In this example, the connection is created as the db object, which is then passed to the
sd_server() function inside the server definition. Note that users should not store any of

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 6/ 15

https://doi.org/10.1371/journal.pone.0331002.g002
https://supabase.com
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 7 — #7

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

the credentials in the app.R file; rather, once the .env file is created, it will be used to make the
database connection.

After making the database connection, the user interface (ui) and server are defined,
which are required components for any Shiny application. The ui is created with the
sd_ui() function, which does two things. First, it renders the survey.qmd file and parses
it into the components needed for the survey, which are stored in a local _survey folder. This
function only re-renders the survey content if changes to the survey.qmd are detected or if
required components are missing. Second, it sets up a placeholder user interface to display the
rendered content, which is handled in the server() function.

The server() function takes the input, output, and session arguments, which
are standard for any Shiny application. Inside, we call the sd_server() function, which is
the primary surveydown function for controlling the survey logic, such as page navigation,
data handling, etc. The sd_server() function has many optional arguments to fine-tune
the control of the survey logic, and other code can also be included inside the server()
function for other purposes, such as setting conditions for displaying specific questions or
skipping forward to other pages in the survey. Some of these options are discussed in the
section of Programmable interactivity via shiny.

The final line in the file calls the shinyApp() function, which is the standard shiny
package command to launch the Shiny application using the ui and server components.
Users can run the application locally to test it for functionality. Once it is ready to be sent to
respondents, the application can be deployed online using a variety of hosting services, such
as shinyapps.io, Posit Connect Cloud, and Heroku. To deploy, using the deployApp()
function from the rsconnect package:

rsconnect::deployApp(appName = "your_app_name")

Fig 3 below illustrates the overall logic flow of a typical survey using the surveydown
platform, highlighting the three primary actions in the app.R file: connecting to a database
with sd_db_connect(), rendering the survey.qmd file and creating the main UI
container with sd_ui(), and serving the survey pages and updating the database with
sd_server(). As the diagram illustrates, the survey designer only need to edit the app.R
and survey.qmd files to define the survey content, while the surveydown package functions
handle the survey web application implementation and database management.

While this example illustrates the basic structure of a surveydown survey, the platform
offers extensive functionality beyond what is shown here, including conditional display logic,
page skipping based on responses, randomization of content, custom interactive elements,
and robust data management features. These more advanced features, which leverage the
full power of R and the Shiny framework, enable researchers to create sophisticated survey
instruments that can adapt to respondent inputs in real-time.

Key advantages and comparison with alternatives
The surveydown platform offers several advantages over traditional survey platforms: it is
composed entirely using free and open-source software, it enables a fully reproducibility sur-
vey design experience via markdown and R code, and it offers enhanced interactivity and
extensive customization via Shiny. Furthermore, its disaggregated architecture allows the
researcher control over where and how the survey application and data storage are hosted,
providing fine-tuned control over the overall survey implementation.

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 7/ 15

https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 8 — #8

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

Fig 3. Logic flow diagram of the surveydown survey platform.

https://doi.org/10.1371/journal.pone.0331002.g003

Leveraging mature open-source technologies
The selection of R, Quarto, Shiny, and PostgreSQL as the foundational technology stack
for surveydown was deliberate, considering the specific needs of survey researchers and the
advantages these technologies provide over alternatives.

R [1] was chosen as the primary programming language for several key reasons. First,
R has an established presence in the social sciences, where much of survey research takes
place. Many researchers in disciplines such as sociology, psychology, political science, and
economics are already trained in R for statistical analysis, reducing the learning curve for
new users and facilitating integration with existing workflows. Second, R’s broader ecosys-
tem includes extensive packages for data manipulation, visualization, and analysis, making it
ideal for a platform that aims to connect survey design directly to data analysis. For the case
of surveydown, R has mature integration with connecting to PostgreSQL databases. Third, R’s
functional programming and lazy evaluation paradigm makes the language well-suited for
controlling survey operations such as randomization, question generation, and conditional
logic.

Quarto [2] was chosen as the framework for defining survey content in plain text files. As
an evolution of R Markdown, Quarto combines the simplicity of markdown with deep inte-
gration of executable code. This combination is well-suited for survey contexts where textual
content (instructions, questions, explanations) must be interspersed with functional compo-
nents (questions, navigation, conditional elements). Quarto’s ability to render content into
static HTML serves as a critical intermediate step in the surveydown workflow, providing a
consistent foundation for the dynamic Shiny application to build upon. Additionally, Quarto’s
widespread adoption in scientific publishing creates transferable skills as researchers already
using Quarto for writing, presentations, or websites can apply that knowledge directly to

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 8/ 15

https://doi.org/10.1371/journal.pone.0331002.g003
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 9 — #9

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

survey design in surveydown. Finally, surveydown users will directly benefit from all future
innovations and improvements to Quarto over time with limited adaptations needed in the
surveydown source code.

Finally, we chose Shiny [3] as the web framework for several reasons. First, it allows for the
creation of interactive web applications without requiring knowledge of JavaScript, HTML, or
CSS, making sophisticated survey functionality accessible to researchers without web devel-
opment expertise. Second, with over a decade of development since its initial release in 2012,
Shiny has matured into a robust framework with extensive documentation, community sup-
port, and a rich ecosystem of extensions. This maturity translates into reliability and sustain-
ability for surveydown as a platform. Third, Shiny’s reactive programming model is particu-
larly well-suited to surveys, where changes in one part of the application (e.g., a respondent
selecting an answer) can trigger updates elsewhere (e.g., displaying conditional questions or
updating dynamic content).

The combination of these technologies creates a synergy that would be difficult to achieve
with other technology stacks. Furthermore, by leveraging open-source technologies, the sur-
veydown project also embraces open-source. Making the surveydown R package open-
source not only allows researchers to inspect the underlying code to understand how their
surveys functions, but also allows the community of users to contribute improvements, bug
fixes, and new features. As of the composition of this paper, the surveydown R package
has reached 118 GitHub Stars, 38 addressed issues, and 52 discussions led by users with 3,703
downloads from CRAN. In addition, contributors have already added multiple features via
pull requests, such as the ability to translate system messages into one of six supported lan-
guages or custom messages provided by the user. The active community provides long-term
sustainability both for the surveydown project itself and for the research projects that it serves.

Reproducibility from code
Reproducibility from code is a core advantage of the surveydown platform. The markdown-
based approach to survey design is a fundamental change in thinking about how surveys can
be created. Rather than using a GUI or spreadsheet interface, surveydown uses plain text files
to define all survey content, enabling full reproducibility by default and easy integration with
common development tools like Git for version control. By enabling a reproducible workflow
for survey construction, surveys can be more easily evaluated by collaborators and reviewers,
especially after data collection. For example, the entire survey instrument used in a study can
be fully reproduced and experienced by other experts during a peer review process without
needing proprietary software, enabling a level of transparency that is difficult or impossible to
achieve with other platforms.

Alternative survey platforms do support different forms of reproducibility, but often in
limited ways. For example, users of the proprietary software Qualtrics [4] can export a .qsf
file to share survey designs with other Qualtrics users to reproduce their surveys. However,
this only enables reproducibility for users who have a Qualtrics subscription, which lim-
its accessibility and interoperability with version control tools like Git. In contrast, by using
plain text files, surveydown surveys can be easily read and directly edited without the need for
proprietary software to interpret the files.

Beyond reproducibility, using plain text to define survey content has several other advan-
tages. For example, the survey itself serves as its own documentation since code comments
can be used to explain design decisions, which improves long-term maintainability. In com-
parison, a GUI-based application has limited ability to leave a trail of comments or sugges-
tions about changes. In addition, surveys made using plain text can benefit from using Large

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 9/ 15

https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 10 — #10

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

Language Models (LLMs) such as ChatGPT [5] for survey design. The survey.qmd and app.R
files for a survey can be provided survey to an LLM to make revisions and improvements
with simple prompts. Likewise, if a user wants to implement a more complex feature than is
natively supported, they can use an LLM to help solve how to implement it in Shiny. As AI
tools continue to evolve, we expect AI integration with surveydown to become even more
significant.

Programmable interactivity via shiny
Perhaps the most powerful feature of surveydown is its integration with the Shiny web frame-
work, which enables real-time code execution during survey administration. Shiny’s reactive
programming framework vastly increases the capabilities of surveydown.

A common use case is conditional control logic, such as conditionally displaying questions
and conditionally navigating to desired pages. For example, consider a multiple choice ques-
tion where a respondent can select an “other” option that, if chosen, will trigger a second
question to display allowing the user to specify the “other” field. This type of control to con-
ditionally display questions is achieved using the sd_show_if() function in the app.R file,
where survey designers can specify any number of conditions that, if true, will display a target
question. Likewise, a designer can also conditionally skip a respondent forward to a specified
page if a condition is true using the sd_skip_forward() function. These functions rely
on Shiny’s reactive programming framework where logic behavior changes depending on the
actions taken by the survey respondent.

Another use case is to reactively change a question label or other text in the survey based
on users’ previous choices. For example, consider a question asking whether the respondent
prefers dogs or cats; a natural follow-up question might be whether the respondent is a dog
or cat owner. Using reactivity, the text of the second question can be dynamically updated
(e.g, “do you own a dog” versus “do you own a cat”) depending on what they chose on the
first question. We call these “reactive questions,” which are defined in the app.R file and called
in the survey.qmd file using sd_output().

Finally, the Shiny framework enables a wide variety of randomization options in how it
handles sessions. Respondents can be assigned random values that are held constant for each
user or not depending on the survey designer’s objective, providing a high degree of flexibility
in randomized survey designs.

Because the R Shiny framework is relatively mature, users can also take advantage of all
of the existing html widgets developed to create custom questions beyond those already
supported. One example of a custom question is an interactive map question using the
popular leaflet package for creating interactive maps [6]. Users can write R code to
define the map widget in the server() then pass it as the output argument in the
sd_question_custom() function. Fig 4 below shows a screenshot of an example survey
where users are asked to select the state they live in from the map.

Comparison with existing platforms
In this section we compare surveydown with other popular survey platforms along six cate-
gories:

• User interface: The interface used by survey designers (not participants).
• Cost: Whether the platform is free, paid, or has both free and paid tiers.
• Reproducibility: Whether a survey can be fully reproduced from source files.
• Open-source: Whether the platform’s source code is freely available.

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 10/ 15

https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 11 — #11

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

Fig 4. Screenshot of a custom question using the leaflet package to display an interactive map.

https://doi.org/10.1371/journal.pone.0331002.g004

• Data control: How much control users have over survey data storage and access.
• Programmable: The ability to embed and execute custom code during survey runtime,
enabling programmatic control over content display, data processing, and user interactions.

Table 1 compares 14 platforms across these dimensions. For the last four features, we label
the feature as “Yes”, “No”, or “Partially”, in which case “Partially” means the platform has
some limited capabilities for the feature. For Reproducibility, we label a platform as “Partial”
if surveys cannot be freely reproduced without proprietary software. For example, while
Qualtrics surveys can be reproduced using .qsf files, only Qualtrics subscribers can use them.
ForData Control, we label a service as “No” if users can only obtain access to the response
data through a proprietary service, and “Partial” if the service offers the capability of storing

Table 1. Comparison of features for select survey platforms.
Platform User Interface Cost Reproducible Open Source Data Control Programmable
Google Forms GUI Free ◻ ◻ ◻ ◻
REDCap GUI Free/Paid ◻ ∎ ∎
Qualtrics GUI Paid ◻ ◻ ∎
Sawtooth GUI Paid ◻ ∎
CASIC Builder GUI Paid ◻ ◻ ◻
SurveyCTO GUI Paid ◻ ∎
QDS GUI Paid ◻ ◻ ◻ ◻
LimeSurvey GUI Free/Paid ∎ ◻ ∎
Open Data Kit XLSForms Free/Paid ∎ ∎
oTree GUI, Python Free/Paid ∎ ∎ ∎ ∎
SurveyJS GUI, JavaScript Free/Paid ∎ ∎ ∎
formr XLSForms, markdown, R Free ∎ ∎
shinysurveys R, CSV Free ∎ ∎ ∎
surveydown markdown (Quarto), R Free ∎ ∎ ∎ ∎
Legend: ∎ = Yes, = Partially, ◻ = No.

https://doi.org/10.1371/journal.pone.0331002.t001

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 11/ 15

https://doi.org/10.1371/journal.pone.0331002.g004
https://doi.org/10.1371/journal.pone.0331002.t001
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 12 — #12

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

the data on a private server, which might require a customized or more complex set of steps
compared to the service storing the data.

Consider Google Forms [7], a well-known free platform with an intuitive interface for
creating simple surveys. While easy to learn, it lacks reproducibility since designs cannot be
captured in source files. It is not open-source, provides limited data control with data stored
exclusively in Google Sheets, and offers no programmable features. In contrast, the survey-
down platform distinguishes itself through its integration with the R ecosystem and Quarto
publishing system. It excels in reproducibility through its markdown-based approach, pro-
vides full data control, and offers exceptional programmable features through the Shiny
framework.

Most platforms in our comparison rely on graphical interfaces or spreadsheet structures
(XLSForms) to define survey content, which generally limits reproducibility. Some frame-
works like SurveyJS [8] and oTree [9] offer better reproducibility by storing designs as struc-
tured data files. Approximately half of the surveyed platforms are open-source, with varying
degrees of cost, data control options, and programmable features. Notable open-source alter-
natives to surveydown include formr [10], which also integrates with R but requires a com-
plex server setup for self-hosting; LimeSurvey [11], which offers extensive features as a GUI-
based platform, and Open Data Kit [12], which excels in field-based mobile data collection
but creates a disconnect between survey design and analysis environments.

Finally, within the R ecosystem specifically, several approaches have emerged that also
leverage Shiny for survey implementation. Kaufman (2020) highlighted the potential of
R-based survey tools with Shiny using a series of examples, but did not provide a comprehen-
sive package [13]. A close alternative to surveydown is shinysurveys package, by Trattner and
D’Agostino McGowan (2021), which offers a more formalized implementation comparable to
Google Forms, and light programmability support with R code. The approach provides repro-
ducibility but with relatively simple functionality limited to basic survey designs that rely on
predefined functions and structures, offering less flexibility for complex survey designs and
custom interactive elements [14].

Given the flexibility of the Shiny web framework, surveydown can also serve as a free and
open-source alternative to existing proprietary platforms for more specialized purposes. For
example, the Poll Maker by Mentimeter [15] is a popular proprietary platform for creating
interactive live polls and quizzes, where respondents see the live survey results in real time.
A similar live polling capability can be achieved with surveydown using the sd_get_data()
function, which gets the latest response data and refreshes according to a specified time inter-
val, which can then be used to display summary results to respondents. A live-polling tem-
plate is available at https://surveydown.org/templates/live_polling.

Finally, it is important to note security considerations for data collection tools like survey-
down. Given surveydown’s disaggregated design, three separate components require secu-
rity considerations: the surveydown application code, the app hosting service, and the data
storage service. For the surveydown application code, we have followed best practices in how
survey response data is internally handled, such as using SQL injection prevention strategies
and ensuring that users store their database credentials as a .env file to avoid accidental expo-
sure. We also adopted an architecture where all content in the survey is served entirely from
the shiny server, preventing respondents from being able to see content in the source code of
other pages before getting there from the survey navigation. While the package does not yet
have a security compliance certificate for the application code, this is a longer-term goal. For
the app hosting service, users can choose from different providers, each of which offer differ-
ent security measures. For example, while shinyapps.io is a free service, it is not HIPAA com-
pliant. Alternatives such as Heroku or Hugging Face may offer other security measures, and

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 12/ 15

https://surveydown.org/templates/live_polling
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 13 — #13

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

users are encouraged to review their security needs before choosing a hosting service. Finally,
for data storage, we suggest Supabase as a free, open-source, and convenient to use platform
that has TLS encryption among other security features, including multi-factor authentication
(MFA) and being SOC 2 and HIPAA compliant.

Discussion and conclusion
The surveydown platform represents a significant step forward in survey methodology by
bringing the principles of reproducible research to survey design and implementation. By
combining the expressiveness of markdown, the computational power of R, and the inter-
activity of Shiny, surveydown enables researchers to create sophisticated survey instru-
ments that are fully documented, version-controlled, and integrated with data analysis
workflows.

One of the primary contributions of surveydown is the idea of achieving full reproducibil-
ity through code. By defining surveys in plain text (markdown and R code), surveydown
enables complete reproducibility and version control of survey instruments, supporting trans-
parent research practices and long-term preservation of survey instruments. The platform
also offers programmable interactivity by leveraging the Shiny web framework, enabling real-
time code execution during survey administration. Another significant contribution is its
open and disaggregated architecture that separates survey design, deployment, and data stor-
age, giving researchers control over each component. Finally, as a free and open-source plat-
form, surveydown removes financial barriers to sophisticated survey research tools while
providing extensive customization options and benefiting from a growing community of
contributors.

The platform does have limitations. Since the platform requires some minimal knowledge
of markdown and R, it creates a higher entry barrier compared to typical GUI-based plat-
forms, potentially limiting adoption among researchers without coding experience. Addition-
ally, while the disaggregated architecture provides flexibility, it also requires users to handle
deployment and database configuration, which may be challenging for some users, though
careful documentation and tutorials helps ease these barriers. From a functionality perspec-
tive, although surveydown can currently handle complex survey designs, it does not yet match
all specialized features of mature platforms, especially with respect to participant recruitment
and tracking as some platforms do (e.g., Qualtrics). Finally, as with any web-based survey
platform, performance under high concurrent loads depends on the hosting service chosen by
the user. While free hosting options like shinyapps.io exist, users may need to pay for greater
hosting server performance.

Looking forward, surveydown has several promising future directions. A graphical inter-
face that creates the survey.qmd and app.R files for a surveydown survey would lower the
entry barrier for users with limited coding experience while maintaining a reproducible work-
flow. This approach would bridge the gap between ease-of-use and reproducibility, poten-
tially broadening the platform’s appeal. We are in the process of building this tool as a com-
panion package called sdstudio (https://github.com/surveydown-dev/sdstudio), which will
serve as a comprehensive studio for building, previewing, and managing surveys using a GUI
while maintaining full reproducibility. In addition, building a comprehensive library of tem-
plates for common survey designs would accelerate implementation for new users and pro-
mote best practices in survey design. We have already begun this with a series of existing tem-
plates available on the main documentation website at https://surveydown.org. Also, while
the current implementation is responsive, developing specialized mobile question types and

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 13/ 15

https://github.com/surveydown-dev/sdstudio
https://surveydown.org
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 14 — #14

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

layouts would improve the experience for respondents on mobile devices, which represent an
increasing share of survey participants.

As survey research continues to evolve, platforms that emphasize transparency, repro-
ducibility, and programmatic flexibility will become increasingly important. The open-
source nature of surveydown ensures that it can grow alongside changing methodological
requirements and technological capabilities, driven by the needs of the research community
it serves. By reimagining survey design through code, surveydown not only addresses practi-
cal limitations in existing platforms but also aligns survey methodology with broader trends
toward computational reproducibility in scientific research. This approach has the poten-
tial to enhance the rigor, transparency, and long-term value of survey-based research across
disciplines.

Acknowledgments
We would like to thank the two reviewers for their helpful suggestions on this manuscript.
We also gratefully acknowledge the early adopters of surveydown—Reed Benkendorf, Jeffrey
Girard, Will King, Stefan Munnes, Robert Kubinec, and Christian Willig—for their valuable
feedback and support.

Author contributions
Conceptualization: John Paul Helveston.

Data curation: John Paul Helveston.

Formal analysis: Pingfan Hu, Bogdan Bunea.

Funding acquisition: John Paul Helveston.

Investigation: Pingfan Hu.

Methodology: John Paul Helveston.

Project administration: John Paul Helveston.

Resources: Pingfan Hu, John Paul Helveston.

Software: Pingfan Hu, Bogdan Bunea, John Paul Helveston.

Supervision: John Paul Helveston.

Validation: Pingfan Hu.

Visualization: John Paul Helveston.

Writing – original draft: Pingfan Hu, John Paul Helveston.

Writing – review & editing: Pingfan Hu, Bogdan Bunea, John Paul Helveston.

References
1. R Core Team. R: A Language and Environment for Statistical Computing; 2024.

https://www.R-project.org/
2. Allaire JJ, Teague C, Scheidegger C, Xie Y, Dervieux C, Woodhull G. Quarto; 2024.

https://github.com/quarto-dev/quarto-cli
3. Chang W, Cheng J, Allaire J, Sievert C, Schloerke B, Xie Y, et al. shiny: Web Application

Framework for R; 2024. https://CRAN.R-project.org/package=shiny.
4. Qualtrics. Qualtrics Research Core™. 2024. https://www.qualtrics.com/

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 14/ 15

https://www.R-project.org/
https://github.com/quarto-dev/quarto-cli
https://CRAN.R-project.org/package=shiny
https://www.qualtrics.com/
https://doi.org/10.1371/journal.pone.0331002

ID: pone.0331002 — 2025/8/28 — page 15 — #15

PLOS One surveydown: An open-source, markdown-based platform for programmable and reproducible surveys

5. OpenAI. ChatGPT: Get answers. Find inspiration. Be more productive.; 2025.
https://openai.com/chatgpt/overview/

6. Cheng J, Schloerke B, Karambelkar B, Xie Y. leaflet: Create Interactive Web Maps with the
JavaScript ‘Leaflet’ Library; 2024. https://CRAN.R-project.org/package=leaflet

7. Google Inc. Google Forms. Web application. 2025. https://forms.google.com/
8. Devsoft Baltic OÜ. SurveyJS. 2024. https://surveyjs.io/
9. Chen DL, Schonger M, Wickens C. oTree—An open-source platform for laboratory, online, and field

experiments. Journal of Behavioral and Experimental Finance. 2016;9:88–97.
10. Arslan RC, Walther MP, Tata CS. formr: a study framework allowing for automated feedback

generation and complex longitudinal experience-sampling studies using R. Behav Res Methods.
2020;52(1):376–87. https://doi.org/10.3758/s13428-019-01236-y PMID: 30937847

11. LimeSurvey Project Team. LimeSurvey: An Open Source Survey Tool. 2023.
https://www.limesurvey.org/

12. Hartung C, Lerer A, Anokwa Y, Tseng C, Brunette W, Borriello G. Open data kit: tools to build
information services for developing regions. In: Proceedings of the 4th ACM/IEEE International
Conference on Information and Communication Technologies and Development. 2010. p. 1–12.

13. Kaufman AR. Implementing novel, flexible, and powerful survey designs in R Shiny. PLoS One.
2020;15(4):e0232424. https://doi.org/10.1371/journal.pone.0232424 PMID: 32353057

14. Trattner J, D’Agostino McGowan L. Shinysurveys: Create and deploy surveys in ‘shiny’. 2021.
https://CRAN.R-project.org/package=shinysurveys

15. Mentimeter. Poll Maker: Create Live & Interactive Polls Online; 2025.
https://www.mentimeter.com/features/live-polling

PLOS One https://doi.org/10.1371/journal.pone.0331002 August 29, 2025 15/ 15

https://openai.com/chatgpt/overview/
https://CRAN.R-project.org/package=leaflet
https://forms.google.com/
https://surveyjs.io/
https://doi.org/10.3758/s13428-019-01236-y
http://www.ncbi.nlm.nih.gov/pubmed/30937847
https://www.limesurvey.org/
https://doi.org/10.1371/journal.pone.0232424
http://www.ncbi.nlm.nih.gov/pubmed/32353057
https://CRAN.R-project.org/package=shinysurveys
https://www.mentimeter.com/features/live-polling
https://doi.org/10.1371/journal.pone.0331002

	surveydown: An open-source, markdown-based platform for programmable and reproducible surveys
	References

